Онлайн-курс

GeekUniversity: Факультет Искусственного интеллекта

18 месяцев
12 500
Программа курса

1 год

I четверть. Создание инфраструктуры

В первой четверти вы начнете осваивать технические основы профессии: научитесь работать в Linux и создавать сервера в облачных сервисах AWS, проводить поиск информации и основные операции с файлами, создавать задания по расписанию и выполнять мониторинг работы сервера. Научитесь использовать язык запросов SQL, создавать и оптимизировать сложные запросы. Освоите библиотеки языка Python, предназначенные для Data Science: Numpy, Pandas, Matplotlib, SciKit-Learn.

II четверть. Сбор данных и статистическое исследование Вы познакомитесь с теорией вероятностей и математической статистикой. Научитесь решать задачи по комбинаторике и узнаете о видах распределений, методах проверки статистических гипотез. Изучите методы проведения корреляционного, дисперсионного и регрессионного анализа. Научитесь работать с RESTful/SOAP-сервисами, форматами XML и JSON в Python, а также познакомитесь с особенностями открытых данных (OpenData) и подготовите парсер, который соберет необходимые данные из интернета и сохранит их в СУБД MongoDB.

III четверть. Математика для Data Scientist-a В третьей четверти вы заложите прочный математический базис для будущей профессии через решение задач оптимизации и изучение алгоритмов машинного обучения. Вы подробно рассмотрите математические аспекты алгоритмов, применяемых в Data Science: это линейная и логистическая регрессия, градиентный спуск, метод ближайших соседей, кластеризация, деревья решений, случайный лес, градиентный бустинг. Поймете, как устроены алгоритмы на уровне математики. Эти знания пригодятся как для собеседований, так и для успешной профессиональной деятельности.

IV четверть. Машинное обучение. Совместно с компанией МегаФон В четвертой четверти вы научитесь решать бизнес-задачи с помощью машинного обучения: предсказывать количество заказов, прогнозировать отток клиентов. Пройдете путь от анализа бизнес-задачи, очистки данных и подготовки признаков до создания модели и ее внедрения в продакшн. Научитесь оценивать эффективность моделей и повышать их качество. Также изучите реализацию рекомендательных систем: коллаборативную фильтрацию, рекомендательные системы на основе контента, гибридные рекомендательные системы.

2 год

I четверть. Нейронные сети В пятой четверти вы научитесь решать задачи ML с данными из соцсетей, геоданными, применением временных рядов и графов, а также познакомитесь с нейронными сетями: изучите структуру глубоких, сверточных и рекуррентных нейронных сетей, алгоритмы обратного распространения ошибки, принципы обучения и подбор гиперпараметров для нейронных сетей. На практике познакомитесь с фреймворками для разработки нейронных сетей: Tensorflow, Keras, PyTorch.

II четверть. Задачи искусственного интеллекта. Совместно с компанией NVIDIA В шестой четверти вы изучите продвинутые архитектуры сверточных нейронных сетей и компьютерное зрение: семантическую сегментацию, детекцию и локацию объектов, распознавание лиц и действий, отслеживание траектории в видео, перенос стиля изображения. Также изучите обработку естественного языка (NLP): векторные представления слов, анализ текста, принципы текстового поиска, применение глубокого обучения в NLP (сети RNN, LSTM и GRU), основы машинного перевода, извлечение краткого содержания текста, принципы построения голосовых помощников и чат-ботов.

Регистрация на сайте организатора

Страница курса

Расписание

Вас ожидают 2–4 занятия в неделю

Сертификат

Комментарии

Комментировать