В химии много законов и правил, но всегда есть место неожиданностям. Бывает, что сложившиеся представления прочно укореняются в сознании и необычный факт, который не согласуется с общепринятыми понятиями, воспринимается с недоверием или как чудо. О том, как ученым удалось получить кислоту, про которую даже в учебниках написано, что она не существует, и заставить инертные газы вступать в реакцию, — в сокращенной главе из книги химика Михаила Левицкого «Карнавал молекул. Химия необычная и забавная».

Исправим учебники химии

Только не обещайте исправить положение вещей, а то опять каких-то вещей не досчитаемся!
Михаил Мамчич
Сразу отметим, что этот случай — исключительно редкий. В учебниках содержатся знания, отшлифованные и проверенные десятилетиями, однако бывают сюрпризы. Например, известно, что угольная кислота
Угольную кислоту
Стабильность чистой

В присутствии воды, т.е. при обычном способе получения угольной кислоты, легко образуется восьмичленный переходный комплекс с помощью тех же водородных связей при участии одной молекулы угольной кислоты и двух молекул

Возможность существования угольной кислоты в свободном виде не только интересна, но и важна, это открытие позволило по-новому взглянуть на процесс дыхания.
Полагают, что в живом организме угольная кислота, «оберегаемая» от разложения специальным ферментом, позволяет осуществлять быстрый перенос углекислого газа из клеток в кровь, а затем мы его выдыхаем через легкие.
Поскольку свободная угольная кислота получена и, естественно, изучен ее спектр, астрономы полагают, что теперь она может быть спектрально обнаружена в атмосфере планет Солнечной системы.
Полувековая иллюзия

Все иллюзия.
Конечно, и предыдущая фраза.
Станислав Ежи Лец
С момента открытия в конце XIX в. благородных газов (He, Ne, Ar, Kr, Xe) они считались химически абсолютно пассивными и не способными вступать в

Нил Бартлетт (1932–2008)
Изучая соединение платины с фтором
если гексафторид платины может оторвать электрон от кислорода, то он может проделать то же самое с ксеноном, поскольку, как уже было известно, для этого требуется несколько меньшая энергия, чем в случае кислорода.
В результате опыта он получил сразу несколько химических соединений переменного состава, содержащих ксенон.
Это сообщение сразу привлекло внимание химиков. Оказалось, что фторировать ксенон можно и без участия платины действием элементарного фтора. Так были получены
миф, утверждавший абсолютную инертность благородных газов, удалось разрушить. Возникло не только новое направление в химии, это открытие привело к пересмотру некоторых фундаментальных представлений.
Нулевую группу в периодической системе упразднили, а благородные газы поместили в VIII группу, т.е. туда, где находятся малоактивные благородные металлы палладиевой и платиновой групп.

Прокатиться на реакции

Хорошо кататься по российским просторам на импортном внедорожнике, плохо только, что попадаются дороги
Стас Янковский
Иногда случается так, что разрозненные факты, если их объединить, могут указать новое направление исследований. Рассмотрим, как археологические изыскания и обычные бытовые наблюдения привели к пониманию нового явления.
От наблюдения к открытию
В конце XIX в. достоинства металлического никеля, такие как механическая прочность в сочетании с коррозионной устойчивостью и жаропрочностью, были хорошо известны. Никель применяли для изготовления заводской аппаратуры и для покрытия металлической посуды. Однако коррозионная устойчивость никеля в бытовых условиях оказалась невысокой. Нагревание такой посуды на огне приводило к постепенному ее разрушению, которое долгое время объясняли коррозией, протекающей при повышенной температуре.
Те, кто был более наблюдателен, замечали, что при нагревании этой посуды на раскаленной плите (без контакта с пламенем) коррозия не наблюдалась. Следовательно, кислород и влага воздуха ни при чем. Оказалось, что все дело в контакте никеля с монооксидом углерода
Простое взамен громоздкого
Очистка металлов от примесей всегда была делом трудоемким, и потому химики постоянно искали простые и удобные способы, позволяющие отделять металл от загрязнений.
Основной источник металлического никеля — сульфидные руды, в которых содержатся также примеси сульфидов кобальта и железа (
Карбонил никеля открыл другой, более короткий путь. Он основан на том, что

При последующем нагревании до
Транспортные реакции в промышленности и у нас дома
Итак, основной замысел — очистка металла путем перевода его в летучее соединение. Естественно, эту идею постарались применить и к другим металлам. Необходимо было, чтобы металлы сравнительно легко образовывали летучие соединения. Удачные варианты были найдены: при пониженных температурах иод легко реагирует с такими металлами, как титан, цирконий, гафний и др. Полученные иодиды можно легко отогнать, затем при нагревании они разлагаются, образуя чистый металл. Освободившийся иод может быть вновь направлен на взаимодействие с очередной порцией очищаемого металла. Реакции такого типа называют транспортными, роль транспортного средства играет, естественно, иод.
Способности иода в роли «перевозчика» широки: он реагирует при

На этом превращения не завершаются, при высокой температуре более устойчивы соединения кремния со степенью окисления два, поэтому получившийся

Как и в случае с алюминием, окислительно-восстановительная реакция проходит между атомами кремния, только в обратном, нежели у алюминия, направлении: из
Если образовавшийся газообразный

В холодной зоне останется элементарный кремний (естественно, высокочистый), а
Чем отличаются процессы очистки металлов и кремния? В конечном итоге чистые металлы получают при термическом разложении летучих иодидов, а элементарный кремний, наоборот, образуется в охлаждаемой зоне. Впрочем, для кремния существует и вторая возможность. Если получившийся при
Пожалуй, наиболее эффектное применение транспортной реакции реализовано в лампах накаливания. В вакуумированной ламповой колбе раскаленная вольфрамовая спираль постепенно испаряется и в итоге перегорает. На внутренней стенке такой лампы иногда можно заметить сероватый налет испарившегося вольфрама. Если заранее ввести внутрь стеклянной колбы немного иода, он будет реагировать с осевшим на стенках колбы металлическим вольфрамом, образуя летучий иодид вольфрама. Пары иодида, коснувшись нагретой спирали, разлагаются на вольфрам и иод. Таким образом, вольфрам вновь возвращается на спираль, а иод вовлекается в следующий цикл. В результате срок службы лампы заметно увеличивается. Именно так работают широко известные галогеновые лампы.
В рубрике «Открытое чтение» мы публикуем отрывки из книг в том виде, в котором их предоставляют издатели. Незначительные сокращения обозначены многоточием в квадратных скобках. Мнение автора может не совпадать с мнением редакции.
Читайте нас в Facebook, VK, Twitter, Instagram, Telegram (@tandp_ru) и Яндекс.Дзен.
Комментарии
Комментировать