История вакцинации началась не с первой вакцины — использованного Эдвардом Дженнером материала из пустул коровьей оспы для защиты от оспы натуральной. Скорее она началась с долгого периода изучения инфекционных заболеваний у людей. Что ни говори, а достижения науки в области вакцинации продолжают спасать миллионы жизней ежегодно, и особенно остро этот вопрос встает сейчас, на фоне пандемии COVID-19. Заглянули в прошлое вакцинирования, чтобы узнать, как боролись с болезнями раньше, и, возможно, представить, каким будет будущее.

Существуют доказательства того, что китайцы использовали прививку от оспы (точнее, вариоляциюВариоляция включает подкожную инъекцию или вдыхание материала из пустул оспы, такого как гной или сухие струпья.) еще в 1000 году нашей эры. Вот так давным-давно жители Поднебесной прознали, что люди, которые однажды заразились оспой, неуязвимы для повторного заражения. Сложив два и два, они пришли к идее сохранять оспенные пустулы людей, перенесших болезнь в легкой форме, сушить их, измельчать до состояния порошка и вдувать в ноздрю. После такой процедуры пациенты страдали от симптомов оспы (сыпи и лихорадки), однако у тех, кто заразился посредством вариоляции, было гораздо больше шансов на выживание, чем у тех, кто заразился натуральной оспой: от вариоляции умирал 1 человек из 50, а от натуральной оспы — 3 из 10.

Разрозненные и чуть менее надежные истории об аналогичных усилиях по вакцинации также были зарегистрированы в Индии, Турции и Африке, но там свидетельств гораздо меньше.

Сегодня вакцинация находится в центре внимания мирового сообщества в связи с исследованиями фармацевтических компаний и университетов, которые, несмотря на первые результаты, по-прежнему стремятся разработать наиболее эффективный способ предотвращения дальнейшего распространения COVID-19. И тому, что сегодня мы можем получать вакцины за один год (а это астрономическая скорость разработки!), мы обязаны столетиям непрерывной работы, превратившей вакцинацию из грубой и зачастую рискованной практики в высокоразвитую науку.

Упомянутая практика вариоляции распространилась в Европе и, в частности, в Великобритании в 1720-х годах. Леди Мэри Уортли Монтегю, жена британского посла в Турции, узнала о процедуре, к которой прибегали турки, и попросила, чтобы ее маленький сын прошел через введение гноя в разрез, сделанный на его руке. Шестилетний Эдвард Монтегю был вариолирован в 1718 году доктором Чарльзом Мейтлендом в Константинополе, а леди Монтегю порекомендовала сделать прививки другим своим детям и жителям родной страны. В течение следующих нескольких десятилетий вакцинация путем вариоляции стала обычной практикой в ​​Великобритании.

До тех пор, пока ей на смену не пришла инновация уже упомянутого Эдварда Дженнера: его метод претерпевал медицинские и технологические изменения в течение следующих 200 лет и в конечном итоге привел к искоренению оспы. В настоящее время вирус оспы существует только в качестве образца для изучения в двух лабораториях, связанных с ВОЗ, — одна расположена в России, и еще одна — в США.

Дженнер, как и другие его современники, заметил, что доярки, которые в результате своей работы заразились коровьей оспой (заболеванием, которое может передаваться от крупного рогатого скота к человеку), обычно избегали заражения натуральной оспой всякий раз, когда происходила локальная вспышка. По всей видимости, решил Дженнер, коровья оспа достаточно сильно отличалась от натуральной, чтобы вызывать у людей лишь сравнительно легкие симптомы, но при этом была достаточно похожа, чтобы давать иммунитет против человеческой формы болезни. (Забавный факт: слово «вакцина» происходит от латинского слова vacca, что означает «корова».)

В знаменитом эксперименте 14 мая 1796 года, который сегодня вряд ли прошел бы этический контроль, Дженнер извлек кусочки пустулы коровьей оспы у доярки по имени Сара Нельмес и вцарапал их в руку 8-летнего мальчика по имени Джеймс Фиппс. После Дженнер попытался заразить Фиппса человеческой оспой, но мальчик не поддался. Двумя годами позже Дженнер опубликовал свои результаты в книге «Исследование причин и последствий вакцины против натуральной оспы — болезни, обнаруженной в некоторых западных графствах Англии, особенно в Глостершире, известной под названием коровья оспа». Содержание книги стало сенсацией, и уже к 1801 году примерно 100 000 человек были вакцинированы тем же методом.

Но у подхода Дженнера были свои пределы: не у каждой болезни человека есть аналог в виде болезни животного, который может давать иммунитет, не вызывая самого заболевания. И некоторые болезни животных, которые действительно передаются людям, могут быть смертельными для обоих видов. Поэтому самая большая сложность в дальнейшей разработке вакцин заключалась в том, чтобы работать с вирусами и бактериями, которые вызывают болезни человека, но как-то обезоружить их, лишить их способности заражать и при этом обучать иммунную систему распознавать и нейтрализовать их в случае более позднего реального заражения.

Способом достижения этой цели стало «убийство» вируса или бактерии с сохранением ее физических останков нетронутыми с одновременным эффективным обучением организма распознавать мертвый патоген и вызывать иммунный ответ, если он когда-либо столкнется с живым представителем.

Первая вакцина, изготовленная в лаборатории, была получена ​​в 1879 году и была создана Луи Пастером, важной фигурой в микробиологии… для кур. Чем известен Пастер? Например, его исследование ферментации показало, что за этот процесс ответственны микроорганизмы, и он продемонстрировал, что загрязнение пищевых продуктов вызывается бактериями из воздуха, а не их спонтанным зарождением внутри или на поверхности продукта. Пастер же — изобретатель и тезка пастеризации, обработки продуктов питания и напитков нагреванием для уничтожения микробов. Его работа в целом оказала ключевую поддержку микробной теории болезней — идее о том, что инфекционные заболевания вызываются микроорганизмами, а не миазмами.

Наконец, как уже было сказано выше, именно Пастер разработал первую вакцину, произведенную в лаборатории. В далеком 1879 году он изучал куриную холеру, вызванную бактерией Pasteurella multocida, вводя бактерии цыплятам и наблюдая за развитием болезни. По случайному совпадению Пастер обнаружил, что введение цыплятам более старых образцов бактерий привело к тому, что они заболевали менее серьезной формой болезни. Когда таким цыплятам вводили свежие бактерии, они не болели — то есть воздействие ослабленных бактерий сделало их устойчивыми к будущим инфекциям. Используя идею ослабления патогенов, Пастер продолжил изучение сибирской язвы и бешенства и использовал их для создания вакцин.

Это был невероятно важный шаг вперед в науке о вакцинации. Одна из основных категорий современных вакцин — это вакцины, в которых используются живые ослабленные версии вирусов и бактерий. Вакцины MMR (против кори, эпидемического паротита и краснухи) и ветряной оспы — особенно яркие примеры живых аттенуированных вирусных вакцин. В спреях для носа от сезонного гриппа и H1N1-2009 (свиного гриппа) также использовались живые ослабленные вирусы.

Вакцина против бешенства, созданная Луи Пастером в 1885 году, стала следующим шагом, оказавшим влияние на лечение человеческих болезней. А затем наступила заря бактериологии, когда разработки быстро последовали одна за другой. В начале XX века французский врач Альбер Кальмет и ветеринар Камиль Герен разработали вакцину от туберкулеза, аналогичным образом ослабляя штамм бактерии крупного рогатого скота, пропуская 230 ее поколений через искусственные питательные среды, при каждом проходе отбирая все более и более слабые версии. В 1930-е годы были разработаны антитоксины и вакцины против дифтерии, столбняка, сибирской язвы, холеры, чумы, брюшного тифа, туберкулеза и других болезней.

Главная проблема с аттенуированными вирусами заключается в том, что возможны мутации и в некоторых редких случаях вакцина может вызывать болезнь, а не предотвращать ее. По этой причине исследователи XIX и XX веков разработали вакцины, полностью уничтожая патоген либо с помощью тепла, либо с помощью формалина, разбавленной версии формальдегида. Так, прорывная вакцина от полиомиелита Джонаса Солка, одобренная в 1955 году, была основана на полиовирусе, убитом формалином. В более поздней версии Альберта Сабина 1962 года использовался ослабленный штамм.

В конце 1940-х годов и позже ученые стали еще умнее и начали использовать для запуска иммунного ответа лишь кусочки оболочки вирусов и бактерий. Середина XX века в целом была периодом активных исследований и разработок вакцин, когда методы выращивания вирусов в лаборатории привели к новым открытиям и инновациям. Самые серьезные исследования были нацелены на распространенные детские болезни, такие как корь, эпидемический паротит и краснуха, вакцины от которых значительно снизили бремя болезней.

Инновационные методы современной медицины также стимулируют продолжение исследования вакцин: в последнее время, когда геномы стали легко декодировать, исследователи начали разрабатывать вакцины, основанные на извлечении РНК или ДНК из патогенов и их введении в организм. Кусочки генетического материала в теле пациента заставляют клетки производить белки, которые не могут вызывать болезни, но могут повышать чувствительность и обучать иммунную систему. В XXI веке целевые показатели болезней расширились и некоторые исследования все чаще начинают сосредотачиваться на неинфекционных состояниях, таких как зависимость и аллергия — например, долгие годы ведется работа по подготовке вакцины от крайне распространенной аллергии на кошек.

Вековой успех человечества в разработке вакцин означает, что сегодня найти безопасную и эффективную прививку стало проще, чем когда-либо. А поскольку новые вирусы продолжают появляться, арсенал вакцин будет неизбежно расти. Патогены бессмысленны, но безжалостны. Но и наука неумолима. Как и в любой гонке вооружений, в этой есть человеческие жертвы, но со временем, по мере продвижения исследований, будут спасены многие миллионы жизней.

5 интересных фактов о вакцинах

Вирус гриппа A был выделен лишь в 1933 году, а вирус гриппа B — в 1936 году.

Грипп существует очень давно: первые зарегистрированные случаи гриппоподобного заразного заболевания были зарегистрированы Гиппократом около 410 г. до н. э. Термин «грипп» — от influenza di freddo («влияние холода») и/или influenza di stelle («влияние звезд») — был введен в обращение в Италии XIV века и широко использовался в английском языке для описания этого заболевания вплоть до середины 1700-х годов. Однако людям потребовалось довольно много времени, чтобы понять, что именно вирусы, а не бактерии, несут ответственность за это часто смертельное заболевание.

Клетки HeLa сыграли огромную роль в разработке вакцин

Человеческие клетки, выращенные в лабораториях, необходимы для научных исследований. Одна из самых известных клеточных линий — это «бессмертные» клетки HeLa, первые из которых были взяты в 1951 году у пациентки с раком шейки матки в больнице Джона Хопкинса Генриетты Лакс. В отличие от других популяций клеток, которые ученые пытались вырастить в лаборатории и которые не делились более нескольких дней, клетки HeLa делились практически бесконечно, что дало ученым возможность изучить большую популяцию идентичных клеток. Как результат, клетки HeLa сыграли ключевую роль во многих важных научных открытиях, но в мире вакцин они хорошо известны своей ролью в тестировании вакцины против полиомиелита и вируса папилломы человека, который влияет на возникновение рака шейки матки.

Методы хранения первых вакцин были довольно… изобретательны

В конце XVIII века король Испании Карл IV хотел распространить новую вакцину против оспы по всему миру. Поскольку современного холодильного оборудования тогда еще не было, в качестве временного хранилища использовались 22 ребенка-сироты. Детям делали прививки от оспы и брали с собой в «путешествия» — их кровь затем можно было использовать для изготовления вакцин.

Вакцины вызывают коллективный иммунитет

Если большинство людей в сообществе вакцинированы против болезни, невакцинированный человек заболеет с меньшей вероятностью, потому что люди вокруг вряд ли заболеют и распространят болезнь. И наоборот: чем меньше вакцинированных, тем выше риск заболеваний. В среднем вакцины предотвращают более 2,5 миллиона смертей ежегодно. А еще уже существуют вакцины, которые могут остановить ротавирус и пневмонию — два заболевания, от которых ежегодно умирают почти 3 миллиона детей в возрасте до пяти лет.

Муравьи иммунизируют друг друга, а иногда и другие виды насекомых

Муравьи используют так называемую социальную иммунизацию: если один муравей в колонии заражен грибком, другие муравьи вылизывают зараженное насекомое, чтобы распространить инфекцию по всей колонии. Как итог, это делает всю колонию невосприимчивой к грибку. Так что коллективный иммунитет — это не привилегия одних лишь людей.